THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Spin Transport in Two-Dimensional Material Heterostructures

نویسنده

  • André Dankert
چکیده

Spintronics is considered as an alternative for information processing beyond the charge based technology. The spintronic device performance depend on the spin relaxation mechanisms in the channel material. Si and graphene are interesting for their long spin coherence lengths and ideal for spin transport channels. Additionally, the interest in newly discovered two-dimensional semiconductors (2D SC), topological insulators (TI) and hexagonal boron nitride (h-BN) increases due to their strong spin-orbit coupling, existence of spin polarized surface states and insulating band structure, respectively. Despite the recent advances in spintronics, most of these new materials are not explored and the spin physics is not fully understood yet. In this thesis, we create large spin polarizations up to 34% in the Si bulk using ozone oxidized SiO2 as an ideal tunnel barrier and study the influence of its Schottky barrier (SB) on the spin injection at room temperature. In graphene, we investigate the effect of ferromagnetic (FM) tunnel contacts and channel length dependence on the spin signal achieving spin transports over distances of 16μm and spin lifetimes of 1.2 ns in CVD graphene. Using the 2D insulator h-BN as an alternative barrier material in magnetic tunnel junctions and on Si reveals a good tunnel spin polarization, whereas h-BN on graphene significantly increases the spin lifetimes and results in spin polarizations up to 65%. For the 2D SCs MoS2 and black phosphorous we demonstrate a significant reduction of their interface SB by using FM tunnel contacts, which circumvent the conductivity mismatch problem required for magnetoresistance measurements. Finally, we measure the spin-momentum locking in the surface states of the topological insulator Bi2Se3 using FM tunnel contacts up to room temperature. These excellent spintronic properties of the individual materials and their heterostructures promise novel devices with custom-designed spin properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The electrical transport properties in ZnO bulk, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO heterostructures

p { margin-bottom: 0.1in; direction: rtl; line-height: 120%; text-align: right; }a:link { color: rgb(0, 0, 255); } In this paper, the reported experimental data related to electrical transport properties in bulk ZnO, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO single and double heterostructures were analyzed quantitavely and the most important scattering parameters on controlling electron concentratio...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

Magnetoelectric interfaces and spin transport.

Engineered heterostructures designed for electric control of magnetic properties, the so-called magnetoelectric interfaces, present a novel route towards using the spin degree of freedom in electronic devices. Here, we review how a subset of such interfaces, namely ferromagnet-ferroelectric heterostructures, display electronically mediated control of magnetism and, in particular, emphasis is pl...

متن کامل

ELECTRON TRANSPORT IN LOW DIMENSIONAL GaN/AlGaN HETEROSTRUCTURE A DISSERTATION SUBMITTED TO THE DEPARTMENT OF APPLIED PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Nanofabrication techniques give researchers the power to confine electrons in semiconductors to low dimensional mesoscopic systems. The host material can be so clean and electronically simple that we are not limited by the foibles of a particular material. Almost all interesting experiments on mesoscopic semiconductor have been based on GaAs/AlGaAs heterostructure because of the high quality of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015